
3D Terrain with Level of Detail

Written report for the module

BTI3041 – Project 2

by

Amar Tabakovic

Bern University of Applied Sciences

Engineering and Information Technology

Computer Perception & Virtual Reality Lab

Supervisor

Prof. Marcus Hudritsch

January 19, 2024

Abstract

Rendering terrains is a central task for video games, geographic information
systems and simulation software, but also computationally expensive. Opti-
mizations, one of which is the level of detail (LOD), are necessary in order to
ensure adequate performances. Numerous algorithms were developed in the last
30 years which tackle the problem of efficient terrain rendering. A demo terrain
renderer is developed with the goal to demonstrate and compare some of the
ideas of these algorithms. The main implemented algorithm is mostly based on
GeoMipMapping [dB00], but also draws inspiration from GPU-based Geometry
Clipmaps [AH05] and other approaches. The implementation was tested on a
14000×14000 heightmap of Switzerland and bordering regions, yielding around
60 FPS on a 2020 MacBook Air while delivering decent visualizations.

Contents

1 Introduction 8
1.1 Goals of this Project . 8
1.2 Intended Readership . 8
1.3 Notation and Terminology . 9

1.3.1 Mathematical Notation 9
1.3.2 The Term “LOD Level” 9

1.4 Outline of the Report . 9

2 Basics of Terrain Rendering 10
2.1 Terrain Data Representation . 10

2.1.1 Heightmaps . 10
2.1.2 Triangulated Irregular Networks 11

2.2 Bintrees and Quadtrees . 12
2.3 View-frustum Culling . 12
2.4 Potential Problems During Terrain Rendering 14

2.4.1 Cracks . 14
2.4.2 Popping . 15

3 Existing Work and Literature 16
3.1 Algorithms and Approaches for Terrain LOD 16

3.1.1 ROAM . 17
3.1.2 GeoMipMapping . 18
3.1.3 (GPU-based) Geometry Clipmaps 19
3.1.4 Concurrent Binary Trees 20
3.1.5 Conclusion . 21

3.2 Terrain LOD in Real-world Systems 22
3.2.1 Game Engines . 22

4 ATLOD: A Terrain Level of Detail (Renderer) 25
4.1 Used Technologies . 25
4.2 Basic Setup and Architecture . 26

4.2.1 Overview . 26
4.2.2 Command Line Arguments 26
4.2.3 Shaders . 27
4.2.4 Camera . 27
4.2.5 Skybox . 29
4.2.6 Heightmaps . 29

1

CONTENTS

4.2.7 Base Terrain . 30
4.3 Naive Brute-force Algorithm . 31

4.3.1 Vertex and Index Organisation 31
4.3.2 Rendering . 32

4.4 GeoMipMapping . 33
4.4.1 Class Structure . 34
4.4.2 Blocks . 34
4.4.3 Vertex and Index Organisation 35
4.4.4 Rendering . 42

5 Results 48
5.1 Experimental Setup . 48

5.1.1 Hardware . 48
5.1.2 Height Data and GeoMipMapping Configuration 48
5.1.3 Benchmarks . 49

5.2 Performance Benchmarks . 50
5.2.1 Flyover from Corner to Corner 50
5.2.2 360° Rotation . 50

5.3 Visual Accuracy Benchmarks . 50
5.3.1 Large Terrain Screenshots 51
5.3.2 Low FOV Screenshots . 51

5.4 Memory Consumption . 51
5.4.1 RAM . 51
5.4.2 GPU Memory . 51
5.4.3 Examples . 52

6 Discussion 53

7 Conclusion 54
7.1 Potential Improvements . 54
7.2 Outlook for the Bachelor Thesis 54

Bibliography 58

A DEM Preprocessing 59

B Visual Accuracy Benchmarking Images 60
B.0.1 Large Terrain Screenshots 60
B.0.2 Low FOV Screenshots . 65

2

List of Tables

5.1 The specifications of the used MacBook Air 2020. 48
5.2 Rendering settings for the benchmarks. 49
5.3 RMSE of the large terrain screenshots 1 to 5. 50
5.4 RMSE of the large terrain screenshots 1 to 5. 50
5.5 RMSE of the large terrain screenshots 1 to 5. 51
5.6 RMSE of the low FOV screenshots 1 to 5. 51
5.7 Memory consumption by the vertex and index buffers for different

block sizes. 52
5.8 Memory consumption by the heightmap texture on the GPU for

various heightmap sizes. 52
5.9 Memory consumption by the block list at different block sizes and

heightmap sizes. 52

3

List of Figures

2.1 2000× 2000 heightmap of the mountain Dom in Valais, Switzer-
land retrieved from SwissTopo [Fed]. 11

2.2 Example of a TIN. Note that the left area represents a terrain
area with many changes (e.g. mountains, hills, etc.), and the
right area represents an area with few changes (e.g. flat areas). . 11

2.3 Example of a bintree (a) and a quadtree (b). 12
2.4 Example of a view-frustum . 13
2.5 Example of a terrain block with its AABB defined by pmin and

pmax, marked in red. 13
2.6 Example of view-frustum culling with a quadtree viewed from

the top. The view-frustum is marked in yellow and blocks that
intersect the view-frustum are marked in green. 14

2.7 Illustration of a crack (a) and some examples of cracks in a real
rendered terrain (b). 15

3.1 Top-down view of an example triangulation generated by ROAM
(taken from [DWS+97]). 17

3.2 Example of each GeoMipMap of a 5 × 5 block. The omitted
vertices of lower LOD GeoMipMaps are marked as dotted circles
(based on [dB00]). 18

3.3 Example of GeoMipMapping’s crack avoidance between a LOD
2 and a LOD 1 GeoMipMap of two 5× 5 blocks (based on [dB00]). 19

3.4 Example of the flat mesh in Geometry Clipmaps with n = 15,
m = 4 and l = 3 (based on [AH05]). 20

3.5 Unreal Engine’s landscape system LOD morphing (taken from
[Gam]). 23

4.1 The default sunset gradient skybox. 29
4.2 Example of a terrain layout for triangle strips. The looping index

i goes from 0 to the terrain height and j from 0 to the terrain
width. The final indices to be rendered are 0, 3, 1, 4, 2, 5,
RESTART, 3, 6, 4, 7, 5, 8, RESTART. 31

4.3 Example of a normal vector calculation of the bottom right face.
The same process gets repeated for the other three adjacent faces. 32

4.4 The index buffer organisation of the single flat block. The vari-
able n corresponds to the maximum LOD level. 35

4

LIST OF FIGURES

4.5 Every possible border permutation for a LOD 2 GeoMipMap of
a 5× 5 block. The center subblocks have been omitted from the
illustration. 36

4.6 Illustration of accessing the start index and size of the subsets of
the index buffer for LOD 1 and border permutation (0, 0, 0, 0) . . 37

4.7 Illustration of a flat terrain showcasing the linearly growing dis-
tance mode (a) and exponentially growing distance mode (b).
The red, green and blue colors indicate successively lower LOD
levels, starting from the maximum level in the center. 43

5.1 The 13922 × 14140 16-bit greyscale heightmap used for bench-
marking (retrieved from OpenTopography [NAS13]). In this fig-
ure, the gray values were converted from 0,. . . ,65535 to 0,. . . ,255
in order to make the heights more visible. 49

B.1 Screenshot showcasing the screenshot of a large section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b), and the binarised absolute difference (d)
of (c). The computed RMSE is 3.94. 60

B.2 Screenshot showcasing the screenshot of a large section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b), and the binarised absolute difference (d)
of (c). The computed RMSE is 3.1. 61

B.3 Screenshot showcasing the screenshot of a large section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b), and the binarised absolute difference (d)
of (c). The computed RMSE is 2.59. 62

B.4 Screenshot showcasing the screenshot of a large section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b), and the binarised absolute difference (d)
of (c). The computed RMSE is 1.96. 63

B.5 Screenshot showcasing the screenshot of a large section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b), and the binarised absolute difference (d)
of (c). The computed RMSE is 2.32. 64

B.6 Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b) and the binarised absolute difference (d)
of (c). The FOV is set to 6◦ and the computed RSME is 4.82. . . 65

B.7 Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b) and the binarised absolute difference (d)
of (c). The FOV is set to 3◦ and the computed RSME is 5.71. . . 66

B.8 Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b) and the binarised absolute difference (d)
of (c). The FOV is set to 2◦ and the computed RSME is 4.78. . . 67

5

LIST OF FIGURES

B.9 Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b) and the binarised absolute difference (d)
of (c). The FOV is set to 1◦ and the computed RSME is 5.3. . . 68

B.10 Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference
(c) between (a) and (b) and the binarised absolute difference (d)
of (c). The FOV is set to 1◦ and the computed RSME is 4.49. . . 69

6

Listings

4.1 The fog calculation in the fragment shader. 33
4.2 Method GeoMipMapping::loadVertices() that generates the ver-

tex array object and loads the vertex buffer with the flat mesh of
size blockSize× blockSize centered around (0, 0, 0). 37

4.3 Method GeoMipMapping::loadTopLeftCorner() which loads in
the indices of the top left corner of the flat mesh for a given LOD
level and border permutation . 39

4.4 Method GeoMipMapping::determineLodDistance() that deter-
mines the LOD level of a block based on its distance to the camera. 43

4.5 The method GeoMipMapping::calculateBorderBitmap() which
computes the border permutation bitmap for a given block. . . . 44

4.6 The two draw calls occuring inside the second loop over all blocks
inside the method GeoMipMapping::render(). 44

4.7 The vertex shader of the GeoMipMapping implementation. . . . 45
4.8 Calculating the normal vector in the fragment shader using the

heightmap texture. 46

7

Chapter 1

Introduction

In 3D computer graphics, rendering is the central task. Many practical appli-
cations of 3D computer graphics make use of terrains, such as flight simulators,
open-world video games, and Geographic Information Systems (GIS) [LWC+02,
p. 185]. At the same time, rendering terrains, which are large and constantly
visible, is computationally expensive and optimizations are necessary in order
to ensure adequate performance.

One area which offers potential for optimizations is the level of detail (LOD).
The concept of LOD is based on the intuitive idea that the farther away an
object is, the fewer details are going to be visible to the human eye. Over the
last three decades, numerous algorithms and approaches have been published
for the problem of efficient terrain rendering.

1.1 Goals of this Project

The primary goal of this project is the study and exploration of terrain rendering
algorithms. First, the basics of terrain rendering are studied and an overview
of the state-of-the-art of terrain rendering is constructed. Afterwards, a demo
terrain renderer is developed, using the ideas from one or more of the evaluated
algorithms.

This project is restricted to simple heightmap rendering, without any real-time
streaming/paging of terrain data.

1.2 Intended Readership

The reader is assumed to be familiar with the basics of computer graphics, C++
and OpenGL.

8

CHAPTER 1. INTRODUCTION

1.3 Notation and Terminology

1.3.1 Mathematical Notation

This report uses the following mathematical notation:

• The coordinate system is a right-handed coordinate system with y as the
up-direction, unless explicitly stated otherwise.

• N denotes the set of natural numbers, R is the set of real numbers, Rn is
the set of real numbers in n dimensions.

• p = (px, py, pz) denotes a point in R
3.

• v = (vx, vy, vz) denotes a vector in R
3.

• M denotes a matrix in R
n×n.

1.3.2 The Term “LOD Level”

The definition of what “LOD level 0” and what “LOD level l” (l = maximum
LOD) mean is different from paper to paper. Normally, LOD systems use 0
for the highest resolution and l for the lowest resolution. In this report, the
opposite (and slightly more intuitive) approach is followed: l denotes the highest
resolution, and 0 denotes the lowest resolution.

1.4 Outline of the Report

This report is structured as follows:

• Chapter 2 introduces the reader to the basics of terrain rendering. The
topics covered include terrain data representation, common optimizations
and potential problems during rendering.

• Chapter 3 gives an overview of the state of the art of terrain rendering.
Various algorithms and their central ideas are presented in a high-level
manner. Afterwards, some examples of real-world systems using terrain
LOD algorithms are listed.

• Chapter 4 describes the demo terrain renderer (named ATLOD) which
was developed. The basic features and the details of the implemented
algorithm are presented.

• In chapter 5, the performance and visual accuracy of ATLOD is measured
and the results documented.

• Chapter 6 gives a short discussion of the results from chapter 5.

• Chapter 7 concludes this report by mentioning some potential improve-
ments and the outlook for the bachelor thesis.

9

Chapter 2

Basics of Terrain Rendering

2.1 Terrain Data Representation

2.1.1 Heightmaps

One way of representing terrains is using heightmaps. A heightmap is a n× n-
grid that contains the height value y for each (x, z)-position. Positions are
always spaced evenly in a grid-like manner, but the distance between any two
neighboring positions (in other words the (x, z)-scale) is variable.

The main advantage of heightmaps is that they allow for very simple storage
and manipulation of height data, e.g. in form of images, where low color values
represent low areas of terrain and vice versa for high color values. The color rep-
resentation of an image influences the number of possible height values:

• For an 8-bit grayscale image, 256 height values are supported.

• For a 16-bit grayscale image, 65536 height values are supported.

• For an 8-bit RGB image, more than 16 million height values are supported.

Retrieving the height value for a given (x, z)-position is easy, which consists of a
simple lookup at the given position in the image. Figure 2.1 shows a 2000×2000
heightmap of the mountain Dom in Valais, Switzerland.

10

CHAPTER 2. BASICS OF TERRAIN RENDERING

Figure 2.1: 2000× 2000 heightmap of the mountain Dom in Valais, Switzerland
retrieved from SwissTopo [Fed].

2.1.2 Triangulated Irregular Networks

A less commonly used alternative to the heightmap is the triangulated irregular
network (TIN) data structure. A TIN consists of a collection of 3-dimensional
vertices, where the arrangement of vertices can be irregular. Figure 2.2 shows
an example of a TIN.

Figure 2.2: Example of a TIN. Note that the left area represents a terrain area
with many changes (e.g. mountains, hills, etc.), and the right area represents
an area with few changes (e.g. flat areas).

The main advantage of TINs is that fewer polygons need to be used for e.g.
smooth terrain areas. Another advantage is that special terrain features can
be modelled which are usually difficult to model with heightmaps, such as
overhangs, cliffs and caves [LWC+02]. The disadvantage of TINs, however,
is that the full (x, y, z)-coordinates need to be stored, whereas with heightmaps,
only the height value y needs to be stored. Another disadvantage of TINs
is that many terrain LOD algorithms work mainly with heightmaps, such as
[DWS+97, dB00, RHSS98, LH04, AH05, Ulr02, Str09, Dup20], and not with
TINs.

11

CHAPTER 2. BASICS OF TERRAIN RENDERING

2.2 Bintrees and Quadtrees

Binary triangle trees (bintrees) and quadtrees are recursive data structures based
on triangles and quads respectively, and are used to represent the terrain’s
mesh. Bintrees and quadtrees are mostly found in historical algorithms, such as
[LKR+96] and [DWS+97], but have recently been revitalized in [Dup20].

A bintree consists of up to two child triangles, both of which also consist of up
to two child triangles each, and so forth. Quadtrees are structured similarly,
with a quad consisting of up to four child quads, and each child quad consisting
of up to four child quads, and so forth. Figure 2.3 shows an example of a bintree
and a quadtree.

(a) (b)

Figure 2.3: Example of a bintree (a) and a quadtree (b).

The main advantage of bintrees and quadtrees is that LOD can be modelled very
naturally with them. Bintree/quadtree sections with few children correspond
to a low LOD and vice versa for bintree/quadtree sections with many children.
Their disadvantage, however, is that they require frequent modification, which
is costly.

2.3 View-frustum Culling

View-frustum culling is an optimization technique commonly used in computer
graphics. View-frustum culling is used in numerous terrain LOD approaches,
such as [LKR+96, DWS+97, dB00, LH04, Str09]. The view-frustum is the 3-
dimensional pyramid that represents the space that is visible to the camera. It
is defined by six planes: the near, far, left, right, top and bottom face. Each
face has a normal vector and a distance from the origin. Figure 2.4 shows an
example of a view frustum.

12

CHAPTER 2. BASICS OF TERRAIN RENDERING

Figure 2.4: Example of a view-frustum

The main idea of view-frustum culling is to check whether the bounding volume
of an object is contained (at least partially) inside the view-frustum, and if
not, to simply not render the object. This dramatically reduces the number
of draw calls and the number of vertices that get rendered. The bounding
volume of an object is the 3-dimensional volume such that it contains the entire
object inside of it. There are different types of bounding volumes, such as
axis-aligned bounding boxes (AABB), oriented bounding boxes (OBB), bounding
spheres, and more. AABB’s are commonly used in terrain LOD algorithms
[dB00, LH04, Str09] and are defined with two points pmin and pmax, which
indicate both endpoints of the AABB. Figure 2.5 shows a terrain block with its
AABB in red.

Figure 2.5: Example of a terrain block with its AABB defined by pmin and
pmax, marked in red.

View-frustum culling can be further optimized by arranging the scene hierarchy
(i.e. the terrain hierarchy) into a space-parititioning data structure. A widely-
used structure is the already previously mentioned quadtree, where leaf nodes
contain the renderable terrain sections and where each node has an AABB such
that it contains all AABBs of its child nodes. Note that the quadtree in this
case is not the same kind of quadtree from the previous section. At render time,
the quadtree gets traversed starting from the root node. The intersection of the
view-frustum with the AABB of each of the four child nodes gets calculated
and if the AABB of a child node intersects with the view-frustum, the child

13

CHAPTER 2. BASICS OF TERRAIN RENDERING

node gets recursively traversed and the same steps are performed until reaching
a leaf node, at which point the terrain section gets rendered. The number
of AABB-view-frustum-intersection calculations gets reduced, however at the
cost of slightly higher memory consumption. Figure 2.6 shows an example of
quadtree-based view-frustum culling.

Figure 2.6: Example of view-frustum culling with a quadtree viewed from the
top. The view-frustum is marked in yellow and blocks that intersect the view-
frustum are marked in green.

2.4 Potential Problems During Terrain Rendering

While terrain LOD algorithms dramatically improve the performance of terrain
rendering, there are certain issues that can occur.

2.4.1 Cracks

Cracks and holes in terrains can appear when a higher LOD terrain section is
bordered by a lower LOD terrain section. The main problem is that when a
vertex vhigh of a higher LOD terrain section lies on the edge elow of a lower LOD
terrain section and the y coordinate of vhigh is greater or less than the height of
elow at that point, the difference in height causes the crack to appear, as shown
in figure 2.7.

14

CHAPTER 2. BASICS OF TERRAIN RENDERING

(a) The crack is caused by the height difference
of vhigh and elow.

(b) The background color is set to red
to highlight the cracks.

Figure 2.7: Illustration of a crack (a) and some examples of cracks in a real
rendered terrain (b).

Cracks can be solved by either of the following, depending on the capabilities
of the LOD approach:

• Removing the vertex in question, causing the higher and lower LOD
meshes to be connected seamlessly (in figure 2.7 vertex vhigh).

• Inserting an extra vertex at the border edge of the lower LOD mesh
[LWC+02, p. 194] (in figure 2.7 on top of vertex vhigh). The disadvan-
tage of this is that an extra vertex needs to get created.

• Covering the cracks by rendering a strip at the border of the two meshes
[AH05].

2.4.2 Popping

The phenomenon of popping occurs when the camera is moving and the change
in LOD level causes visual pops to appear. Popping decreases the realism of
the terrain and should be as minimal as possible. Popping can be reduced with
vertex morphing [dB00, LH04, Str09], i.e. by animating the transition of one
LOD level to the next seamlessly through interpolation.

15

Chapter 3

Existing Work and
Literature

This chapter starts off by presenting some of the existing algorithms and ap-
proaches to terrain rendering. Afterwards, a selection of real-world systems are
given, in which terrain LOD algorithms are used.

3.1 Algorithms and Approaches for Terrain LOD

Terrain LOD is a well-researched topic and over the last three decades, numerous
approaches have been published. In the following, some of the most important
publications are listed in chronological order. The approaches that are described
in greater detail in the upcoming subsections are highlighted in bold:

• “Real-Time, Continuous Level of Detail Rendering of Height Fields” [LKR+96]
by Lindstrom et al. in 1996.

• “ROAMing Terrain: Real-time Optimally Adapting Meshes”
[DWS+97] by Duchaineau et al. in 1997.

• “Real-Time Generation of Continuous Levels of Detail for Height Fields”
[RHSS98] by Röttger et al. in 1998.

• “Fast Terrain Rendering Using Geometrical MipMapping” [dB00]
by de Boer in 2000.

• “Rendering Massive Terrains using Chunked Level of Detail Control”
[Ulr02] by Ulrich in 2002.

• “Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids”
[LH04] by Hoppe and Losasso in 2004 and the follow-up “Terrain Ren-
dering Using GPU-Based Geometry Clipmaps” by Asirvatham and
Hoppe [AH05] in 2005.

• “Continuous Distance-Dependent Level of Detail for Rendering Heightmaps
(CDLOD)” [Str09] by Strugar in 2009.

16

CHAPTER 3. EXISTING WORK AND LITERATURE

• “Concurrent Binary Trees (with application to longest edge bi-
section)” [Dup20] by Dupuy in 2020.

In the following subsections on the algorithms, all presented ideas are taken
from their respective original publications, unless noted otherwise.

3.1.1 ROAM

ROAM (short for Real-time Optimally Adapting Meshes) is a terrain LOD al-
gorithm developed by Duchaineau et al. [DWS+97] published in 1997. ROAM
represents the terrain mesh using bintrees and performs triangle splits and
merges for generating and removing detail. Figure 3.1 shows an example of
a triangulation generated by ROAM.

Figure 3.1: Top-down view of an example triangulation generated by ROAM
(taken from [DWS+97]).

The central idea of the algorithm is temporal coherence: between two frames, the
meshes are often very similar. This means that the mesh from a previous frame
can be used to compute the mesh of the current frame, rather than building up
the mesh from ground up. This is done using two priority queues: a split queue
Qs and a merge queue Qm. The split queue contains splittable triangles T and
the merge queue contains mergable triangle pairs (T, TB). At each frame, the
terrain mesh gets split and merged using Qs and Qm. until either the required
size/accuracy is reached or the time runs out. The splits and merges always
result in a continuous mesh, i.e. the mesh cannot contain any T-junctions. The
elements of Qs and Qm are ordered by various geometric error metrics, some of
which are the following:

• Nested bounding volumes named wedgies, which are defined to include
the entire x and z extent of a triangle and its subtriangles plus some
padding space above and below the highest and lowest points respectively.
Wedgies are computed while building the initial mesh at the beginning of
the algorithm.

• Another metric is the geometric screen distortion, i.e. the distance be-
tween where a node is supposed to be on the screen and where the algo-
rithm actually places the node. The maximum of all distances is calculated
and used as the base priority metric of the algorithm.

17

CHAPTER 3. EXISTING WORK AND LITERATURE

While the bintree trees gets traversed, various flags are updated which indicate
whether a wedgie is inside the view-frustum completely, partially or not at all
and based on these flags, bintree children outside of the view-frustum do not
get recursively descended.

3.1.2 GeoMipMapping

Geometrical Mipmapping (GeoMipMapping) is a terrain LOD approach pub-
lished by de Boer [dB00] in the year 2000. The central idea of GeoMipMapping
is its analogy to texture mipmapping: just like how textures of far away ob-
jects are rendered using lower resolution texture mipmaps, terrain areas that
are far away from the camera should also be rendered with a lower resolution
mesh.

This is achieved by splitting up the terrain into so-called blocks (also called
patches) of a fixed side length 2n + 1 for some n ∈ N. Each block has a LOD
level 0 ≤ l ≤ n that changes dynamically at runtime. Each representation of
a block at a specific LOD level is called a GeoMipMap. For each GeoMipMap,
the number of vertices on one side is 2l + 1 and the number of quads is 22l.
Figure 3.2 shows an example of a 5× 5 block at LOD levels 2, 1 and 0.

(a) LOD level 2
(maximum).

(b) LOD level 1. (c) LOD level 0
(minimum).

Figure 3.2: Example of each GeoMipMap of a 5×5 block. The omitted vertices
of lower LOD GeoMipMaps are marked as dotted circles (based on [dB00]).

The organisation of the terrain into blocks allows for easy view-frustum culling,
which is performed with a quadtree, where each node contains the AABB of its
four children and the leaf nodes contain the actual blocks.

The LOD level for each block is selected at runtime and is based on the screen-
space error that is caused by changing the LOD level of a block. When the LOD
level of a block changes, vertices get added or removed from the block, which
causes a difference in height δ between the two GeoMipMaps of that block.
Projecting δ into screen-space yields ε. This ε can be limited with a threshold
τ , such that the change in LOD level occurs only if ε < τ . The LOD selection
can be sped up by pre-computing ε per GeoMipMap and storing it in a look-up
table.

GeoMipMapping avoids cracks by checking the four neighboring blocks of a
block and omitting the vertices that would cause cracks in the terrain. The

18

CHAPTER 3. EXISTING WORK AND LITERATURE

vertex omission is performed by rendering the bordering row/column of the
current block as triangle fans, as shown in figure 3.3.

Figure 3.3: Example of GeoMipMapping’s crack avoidance between a LOD 2
and a LOD 1 GeoMipMap of two 5× 5 blocks (based on [dB00]).

Some further optimizations that were mentioned, which extend the just de-
scribed basic GeoMipMapping algorithm, are trilinear GeoMipMapping (i.e.
morphing the vertices at LOD transitions similarly to trilinear mipmapping),
and progressive GeoMipMap streaming.

3.1.3 (GPU-based) Geometry Clipmaps

Geometry Clipmaps [LH04] is a terrain rendering technique published by Hoppe
and Losasso in 2004. A follow-up GPU-based variant of Geometry Clipmaps
[AH05] was published in GPU Gems 2 by Hoppe and Asirvatham in 2005. In this
section, the basic features of the GPU-based Geometry Clipmaps algorithm are
described, and we leave out some more advanced features, such as compression
and noise-generated details.

The algorithm is based on a single flat mesh centered around the camera. The
flat mesh is organized as a set of nested rings of l levels, where the innermost
level l − 1 is a filled-in n × n grid, and where the ring at level i is twice as
big as the ring at level i + 1. This n must be of the form 2k − 1 for some
k ∈ N. Each ring at a level is organized into 12 blocks of size m × m, where
m = (n + 1)/4. Gaps inbetween the blocks are filled up with special types
of blocks, namely the m × 3 ring fix-up and the (2m + 1) × n interior trim.
In order to avoid T-junctions, a string of degenerate triangles is rendered at
the border between blocks of different size. Since each block is identical up to
translation and uniform scale, they get stored once on a vertex and index buffer
and translated and scaled in the vertex shader at runtime, which greatly reduces
memory consumption. Figure 3.4 shows an example of this mesh.

19

CHAPTER 3. EXISTING WORK AND LITERATURE

Figure 3.4: Example of the flat mesh in Geometry Clipmaps with n = 15, m = 4
and l = 3 (based on [AH05]).

In the vertex shader, the algorithm samples the height values from the heightmap
texture. Additionally, it performs the calculations for the so-called transition
regions, which are regions near the border of two levels in which the levels get
morphed, so that the transition between levels is smooth and no popping occurs.
The morphing is performed by computing the blend factor α, which is based on
the position of the camera and the position of the vertex in world-space. This
factor α is defined such that it is 0 everywhere except at the transition region,
where it linearly grows from 0 to 1 until reaching the border.

During rendering, view-frustum culling is performed by intersecting each block
with the view-frustum, and if the AABB of the block does not intersect the
view-frustum, it does not get rendered.

Shading is performed with a normal map, which has twice the resolution of the
heightmap.

3.1.4 Concurrent Binary Trees

The concurrent binary tree (CBT) [Dup20] is a data structure published by
Dupuy in 2020. It essentially allows for binary trees to be computed in parallel
using a binary heap represented as a bitfield. This allows for easy concurrent
manipulation of tree nodes using bitwise operations. The data structure is
applicable to problems relying on binary trees, such as the longest edge bisec-
tion.

The paper contains a section which describes the application of CBTs to terrain
rendering. The approach is similar to [DWS+97] in the sense that it computes
a triangulation of the terrain using bintree splitting and merging. The main
difference is that the spliting and merging of the bintrees happen in parallel
on compute shaders with the CBT data structure, whereas in [DWS+97], the
bintrees are split and merged on the CPU.

The split and merge criteria for the triangles are defined such that sub-pixel

20

CHAPTER 3. EXISTING WORK AND LITERATURE

rasterization is avoided. Bintrees outside of the view-frustum and triangles at
flat areas are not split any further, but no actual view-frustum culling gets
performed.

An issue which is not adressed in the paper is how popping is avoided in the
terrain.

3.1.5 Conclusion

In this subsection, the algorithms and their suitability for implementation are
discussed.

ROAM ROAM is not particularly suited for today’s GPU, since it mainly relies
on immediate mode rendering [LH04], which is outdated in most graphics APIs
of today. In addition to this, the costly splits and merges of the priority queues
happen entirely on the CPU, which is undesirable, since this puts a heavy strain
on the CPU.

GeoMipMapping The strong points of GeoMipMapping are the fact that its
easy to understand and to implement. The algorithm was originally designed for
immediate mode rendering in mind, which is as previously mentioned outdated
nowadays. In order for GeoMipMapping to be suitable for modern GPUs, it
needs to be modified so that it can work with vertex and index buffers, which
is is feasible thanks to its block-based nature.

Geometry Clipmaps GPU-based Geometry Clipmaps was one of the first al-
gorithms to utilize the vertex shader texture sampling functionality, which was
a new feature of GPUs at the time. The fact that only very few vertices and
indices are required on the GPU and the fact that the heightmap can be sam-
pled in the vertex shader make GPU-based Geometry Clipmaps still a suitable
algorithm for modern hardware. This is reflected in the fact that one of the most
widely-used terrain plugins for Godot [Gil] is based on GPU-based Geometry
Clipmaps (see the next section). Some other strong points of the algorithm are
the transition regions for avoiding pops, its configurability, and the fact that no
LOD determination needs to be performed, since the mesh is constant and the
LOD is purely distance based.

CBT The CBT data structure “revitalized” mesh-subdivision-based approaches
such as [LKR+96, DWS+97], since bintrees can now be computed in parallel
with compute shaders, rather than sequentially on the CPU. It is a rather new
approach that has yet to be tested in the real-world.

Overall Conclusion Overall, a suitable algorithm loads the vertices and indices
once to the GPU and does not modify the buffers at runtime. Good candidates
for this are GeoMipMapping with some modifications and GPU-based Geometry
Clipmaps.

21

CHAPTER 3. EXISTING WORK AND LITERATURE

3.2 Terrain LOD in Real-world Systems

This section gives a short overview of real-world systems, such as game engines,
which use terrain LOD algorithms.

3.2.1 Game Engines

Godot

Godot is a cross-platform game engine written in C#, C++ and its own scripting
language GDScript. Terrains are supported in form of extensions developed by
community members, which can be installed and used in Godot projects by
game developers.

One such extension is Terrain3D by Cory Petkovsek [Pet] written in C++ for
Godot 4. The LOD approach used in this extension is based on GPU-based Ge-
ometry Clipmaps by Hoppe and Losasso [AH05]. The concrete implementation
of the mesh management is based on the Geometry Clipmaps implementation
by Mike J Savage [Sav17].

Another extension for terrains is the Godot Heightmap Plugin by Marc Gilleron
[Gil] written in GDScript and C++. The extension uses a quadtree-based ap-
proach for terrain LOD.

Unity

Unity is another cross-platform game engine written in C# and C++, and has a
built-in terrain system. The core engine source code of Unity is only accessible
by owning an enterprise licence, therefore no information is given on which
specific terrain LOD algorithm is used for the built-in terrain in Unity. Instead,
a high-level overview of Unity’s terrain system and some additional information
on related projects is given.

Unity’s terrain system supports importing and exporting of heightmaps in the
8-bit or 16-bit grayscale RAW file format. The maximum heightmap size is
4097 × 4097, but the terrain is allowed to take dimensions larger than that.
Visually, the mesh of the terrain LOD resembles that from a quadtree-based
LOD approach, such as [Ulr02]. A pixel error value can be set, which determines
how much the height of the LOD terrain can deviate from the actual height at
that point. The Unity terrain does not perform any morphing between different
LOD levels, which means that pops are visible at LOD level changes.

There exists an open-source library for hierarchical LOD in Unity called HLODSys-
tem [Seo] developed by JangKyu Seo at Unity. HLODSystem also supports ter-
rains with its TerrainHLOD component, allowing for conversion from an Unity
Terrain object to a HLOD mesh with configurable parameters, such as chunk
size and border vertex count. HLODSystem allows the developer to specify
the mesh simplifier to be used and currently the only supported simplifier is
UnityMeshSimplifier [Tec] that utilizes the fast quadric mesh simplification al-
gorithm developed by Sven Forstmann [For].

The previously described CBT data structure and its application to terrain
rendering was published by Dupuy at Unity Labs. At SIGGRAPH Courses 2021,

22

CHAPTER 3. EXISTING WORK AND LITERATURE

Deliot et al. gave a talk in which they described some additional implementation
details and the (potential) integration into the Unity game engine [DDKY21].
As of today, it is unknown whether the CBT data structure was integrated into
Unity’s terrain system.

Unreal Engine

Unreal Engine is another cross-platform game engine written in C++ and fea-
tures an integrated terrain system called the Landscape system. Most of the
information described in this section is taken from the Unreal Engine 5.3 doc-
umentation [Gam].

The landscape system splits up the landscape into landscape components, simi-
larly to [dB00], and stores its height data in texture images, similarly to [AH05]
and [Str09]. The texture uses 32-bit per pixel, with 16-bits being reserved for
the height, which is stored in the R and G channels, and 28-bit for the normals,
stored in the B and A channels. Storing the normals on the GPU as well allows
for high-resolution lighting and shading, regardless of the current LOD level.
The maximum supported heightmap size is 8192 × 8192, which corresponds to
the maximum supported texture size of many GPUs nowadays.

The texture mipmapping functionality is used for LOD, where each mipmap
corresponds to a LOD. The transition between LOD levels gets morphed, as
shown in figure 3.5.

Figure 3.5: Unreal Engine’s landscape system LOD morphing (taken from
[Gam]).

Distant areas get streamed from and to the disk as the camera approaches or
leaves them, respectively.

Frostbite

Frostbite is a closed-source game engine developed by DICE and is known for the
Battlefield series. DICE has held numerous talks in the last few years describing
iterations of their terrain system.

In 2007, Andersson at DICE published a paper describing the terrain rendering
of the Frostbite game engine. Their approach stores a flat mesh of size 33×33 in
a single vertex buffer, which gets and translated to its actual position at runtime.
The heightmap is stored in a texture image and sampled in the vertex shader,
similarly to [AH05]. The view-frustum culling is performed with a quadtree

23

CHAPTER 3. EXISTING WORK AND LITERATURE

and cracks in the terrain get avoided in a similar way to [dB00], except that
crack-causing vertices get removed in the higher resolution mesh, rather than
in the lower resolution mesh. This means that only 9 permutations of the mesh
need to be stored, rather than 16.

During the Game Developers Conference 2012, Widmark DICE presented the
terrain system of Battlefield 3, which was developed with their Frostbite 2 engine
[Wid12]. The system is a quadtree-based terrain LOD system and improves on
their previous work with a greater focus on paging and streaming of terrain
data.

24

Chapter 4

ATLOD: A Terrain Level of
Detail (Renderer)

This chapter describes ATLOD (short for A Terrain Level of Detail (Ren-
derer)), the demo terrain rendering application. The implemented algorithm is
mainly based on GeoMipMapping, but also draws some inspiration from GPU-
based Geometry Clipmaps and other algorithms, notably in its effective usage
of the GPU.

4.1 Used Technologies

ATLOD is written in C++17 and OpenGL 4.2. For compiling build files,
CMake (minimum version 3.5) is used. ATLOD uses the following third-party
libraries:

• GLM: The OpenGL Mathematics (GLM) library provides functionality
for the mathematics of graphics programming, such as classes for vectors,
matrices and perspective transformations.

• GLEW: The OpenGL Extension Wranger Library (GLEW) is an extension
loading library for OpenGL.

• GLFW: GLFW is a multi-platform library for desktop-based OpenGL
applications, offering an API for managing windows, contexts and input
handling.

• ImGui: Dear ImGui is a multi-platform graphical user interface library
developed by Omar Cornut [Cor].

• STB: STB is a collection of header-only libraries developed by Sean Bar-
rett [Bar]. ATLOD uses stb image.h for loading images of heightmaps
and textures.

ATLOD was developed with Qt Creator 9.6.1. The source code is hosted on
GitHub on the repository AmarTabakovic/3d-terrain-with-lod and is licensed
under the MIT license.

25

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

4.2 Basic Setup and Architecture

4.2.1 Overview

ATLOD consists of the following C++ source and header files:

• main.cpp: entry point of the application

• application.cpp and application.h: contains functions for the ImGui
user interface and for rendering. All defined functions and global variables
are inside the Application namespace.

• terrain.cpp and terrain.h: contains the abstract Terrain class (de-
scribed in greater detail in the “Base Terrain” subsection).

• heightmap.cpp and heightmap.h: contains the Heightmap class (de-
scribed in greater detail in the “Heightmap” subsection).

• camera.cpp and camera.h: contains the Camera class and the Frustum

and Plane structs (described in greater detail in the “Camera” subsec-
tion).

• shader.cpp and shader.h: contains the Shader class (described in greater
detail in the “Shaders” subsection).

• skybox.cpp and skybox.h: contains the Skybox class (described in greater
detail in the “Skybox” subsection).

The algorithm implementations are stored specially in folders for them specif-
ically. This decision was made in case multiple C++ source and header files
were required for a single algorithm:

• /naiverenderer: contains the naiverenderer.cpp and naiverenderer.h
files (described in greater detail in the “Naive Brute-force Algorithm” sec-
tion).

• /geomipmapping: contains the geomipmapping.cpp and geomipmapping.h
files (described in greater detail in the “GeoMipMapping” section).

GLSL files are stored in the folder /glsl.

Height data, overlay textures and skybox textures are stored in the data folder
(outside the src folder), which needs to adhere to a specific structure in order for
ATLOD to work properly. The details on how the folder needs to be structured
are described in the README of the GitHub repository.

4.2.2 Command Line Arguments

ATLOD requires some command line arguments to be passed when starting.
The exact required and optional command line arguments can be found in the
README file of the GitHub repository.

The parsing of command line arguments happens in the function parseArgu-

ments() which takes in argc and argv, and is the first function called in main().
The arguments must be of the form --arg name=value and no spaces are al-
lowed in the arguments (e.g. file paths cannot contain spaces). If an argument is

26

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

invalid or a required argument was not passed, ATLOD simply prints the error
message and exits. Otherwise, ATLOD continues with the initialization.

4.2.3 Shaders

The class Shader encapsulates an OpenGL shader program consisting of a ver-
tex shader and a fragment shader. It is based on the “Shaders” chapter in
Learn OpenGL - Graphics Programming [dV20]. The Shader class contains
various methods to set uniform variables. The shader program is compiled in
the constructor and can be used with the method use().

4.2.4 Camera

The “Camera” class is based on the “Camera” chapter in Learn OpenGL -
Graphics Programming [dV20]. It contains various fields which are usually found
in virtual cameras, such as

• Frustum viewFrustum: the view-frustum used for frustum culling (de-
scribed in greater detail in the following subsection).

• glm::vec3 position: the current position of the camera.

• glm::vec3 front: the camera’s front vector.

• glm::vec3 up: the camera’s up vector.

• glm::vec3 right: the camera’s right vector.

• glm::vec3 worldUp: the camera’s up vector in world-space.

• float zNear: the z-coordinate of the near plane.

• float zFar: the z-coordinate of the far plane.

• float aspectRatio: the ratio of the window width and window height.

• float zoom: the current FOV in degrees.

• float yaw: the current yaw in degrees.

• float pitch: the current pitch in the degrees.

• float movementSpeed: the movement velocity.

• float lookSpeed: the look-around velocity.

View-frustum Culling

The struct Frustum is defined with six fields of type Plane (one for each face),
and the struct Plane is defined by the fields glm::vec3 normal and float

distance, which correspond to the mathematical definitions of a frustum and
a plane respectively.

The Camera class contains methods that check whether a given AABB inter-
sects with the view-frustum. These methods are based on the chapter “Frus-
tum Culling” in Learn OpenGL - Graphics Programming [dV20]. View-frustum
culling is implemented in the methods insideViewFrustum() and checkPlane().
The method insideViewFrustum() takes two arguments glm::vec3 p1 and

27

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

glm::vec3 p2, which correspond to the two points defining an AABB, and re-
turns true if the AABB defined by these two points is inside the view-frustum,
false otherwise.

Automatic Flying and Rotation

ATLOD supports automatic flying of the camera using two given world-space
coordinates. The coordinates can be entered in a dialogue window and the flight
velocity is adjustable with a slider.

The flying is implemented by linearly interpolating between the starting coor-
dinate pstart and the end coordinate pend with an interpolation factor t in the
main game loop. More precisely, the direction is calculated by precomputing
the direction vector vflyDir = pend − pstart and then by calculating

pnew = pstart + t · vflyDir.

The interpolation factor t starts at 0 and gets increased by a small value 0 <
tstep ≤ 1 every frame until t = 1. This tstep is adjustable by the user and
corresponds to the previously mentioned flight velocity.

The class Camera contains a method lerpFly() which gets called each frame
and performs the above calculation, as shown in listing ??.

1 void Camera :: lerpFly(float lerpFactor)

2 {

3 _position = origin + direction * lerpFactor;

4 }

The main render loop contains the snippet shown in listing ??

1 float posLerp = 0.0f;

2 // ...

3 void run() {

4 while (! glfwWindowShouldClose(window)) {

5 // ...

6 if (camera.isFlying) {

7 camera.lerpFly(posLerp);

8 posLerp += 0.0005 + flightVel / 50000;

9

10 if (posLerp >= 1.0f) {

11 camera.isFlying = false;

12 posLerp = 0.0f;

13 }

14 }

15 // ...

16 }

17 }

28

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

The automatic camera rotation works similarly, but interpolates from the initial
yaw yawinit to yawinit + 2π with

yawnew = yawinit + t · 2π.

4.2.5 Skybox

A skybox is a box in world space that simulates the sky using six texture im-
ages, one for each side of the box. The skybox implemented in ATLOD is
based on the “Cubemaps” section in the “Advanced OpenGL” chapter in Learn
OpenGL - Graphics Programming [dV20]. It is encapsulated in the class Sky-
box and contains the methods loadTextures(), loadBuffers(), render() and
unloadBuffers(). Skyboxes are rendered as cubemaps.

For a skybox, each of its six texture images front.png, back.png, left.png,
right.png, top.png and bottom.png is stored in the folder of that particular
skybox, which is stored in the data/skyboxes folder. Figure 4.1 shows AT-
LOD’s default skybox.

Figure 4.1: The default sunset gradient skybox.

An improvement over the current skybox system would be to actually calculate
the atmospheric scattering, which would deliver a more realistic and flexible
time-of-the-day-based lighting. A suitable approach would be precomputed at-
mospheric scattering by Bruneton and Neyret [BN08].

4.2.6 Heightmaps

The class Heightmap represents a heightmap and its data. Like many game
engines today, such as Unity and Unreal Engine, ATLOD supports heightmaps
as 16-bit grayscale PNG images, which allow for strorage of up to 216−1 = 65535
height values per pixel. Unlike many game engines, heightmaps are not required
to be square or a power of 2.

29

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

Heightmap Preprocessing

Digital elevation model (DEM) data is commonly offered in the GeoTIFF and
Esri ASCII grid file formats by various DEM providers, such as SwissTopo and
OpenTopography. These files can be converted into PNG using GIS software,
such as QGIS or GDAL. Appendix A describes the process to convert a DEM
from a GeoTIFF file or an Esri ASCII grid file into a 16-bit grayscale PNG
image.

Loading

The method load() is responsible for loading a heightmap located at a given
file path fileName. The height values are stored in the field data of type
std::vector<unsigned short>.

For terrain LOD algorithms using heightmap displacement inside the vertex
shader, the load()method offers the possibility to optionally load the heightmap
directly into an OpenGL texture object. The ID is stored on the current
Heightmap instance in the field heightmapTextureId, so that multiple different
Terrain instances can share the same heightmap texture if needed.

4.2.7 Base Terrain

The base Terrain class is the superclass of all terrain LOD algorithms and con-
tains fields that are common between different terrain LOD algorithms, namely
the following:

• Heightmap heightmap: the heightmap of the terrain.

• Shader shader: the shader program for rendering the terrain.

• unsigned width, heigth: the width and height of the terrain. The
reason for storing the width and height in the terrain as well is because
the effective terrain dimensions can differ from the heightmap dimensions,
as is the case in the GeoMipMapping of this implementation (described
in more detail in the “GeoMipMapping” section).

• unsigned textureId: the ID of the texture object for the overlay tex-
ture.

• bool hasTexture: true if the method loadTexture() was called, false
otherwise.

• xzScale: the scaling variable in the xz-directions. This field is mostly
unused in the implementation and simply set to 1 in most cases.

• yScale: the scaling variable in the y-direction. This field is used every-
where where the y-coordinate of a vertex appears.

It also contains the three virtual methods loadBuffers(), render() and un-

loadBuffers(), which all terrain subclasses must implement. The loadBuffers()
should be called after instantiating the terrain and before rendering. The
method render() should be called every frame in the main rendering loop and
the method unloadBuffers() should be called before destroying the current
terrain instance.

30

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

The class also contains the method loadTexture() to load an overlay texture,
which gets stored in the field textureId;

4.3 Naive Brute-force Algorithm

The naive brute-force algorithm, which simply renders every vertex without any
LOD considerations, is encapsulated in the class NaiveRenderer.

4.3.1 Vertex and Index Organisation

A vertex consists of its (x, y, z)-position, its normal vector (nx, ny, nz) and of
its texture coordinates (u, v). All components are 4-byte floating point values,
which means that per vertex, 4 × 8 = 32 bytes of GPU memory get allocated.
These attributes are organized in a vertex array object stored in the field -

vao.

The indices are organized such that they can be rendered as triangle strips with
GL TRIANGLE STRIPS. Each row is separated using a special marker index named
RESTART, which is set to the maximum possible GLuint value and is used for
the GL PRIMITIVE RESTART mode, allowing for the entire terrain to be rendered
in a single glDrawElements() call. This draw call happens every frame in the
method render(). Figure 4.2 shows the organization of indices for rendering
the terrain as triangle strips.

Figure 4.2: Example of a terrain layout for triangle strips. The looping index i

goes from 0 to the terrain height and j from 0 to the terrain width. The final
indices to be rendered are 0, 3, 1, 4, 2, 5, RESTART, 3, 6, 4, 7, 5, 8, RESTART.

Loading

The method loadBuffers() is responsible for loading the data into the vertex
and index buffer. The first step is the generation of the normal vectors. This

31

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

is done in the method loadNormals(), where the normals of each vertex are
calculated into an intermediate vector normals.

The normals of the vertices are calculated by summing up the normal vectors
of the four adjacent faces, which are given by calculating the cross product of
the adjacent edges. The adjacent edges are given by subtracting neighboring
vertices, as shown in figure 4.3.

Figure 4.3: Example of a normal vector calculation of the bottom right face.
The same process gets repeated for the other three adjacent faces.

Afterwards the generation of the normal vectors, the vertices get generated and
loaded onto the vertex buffer. The same happens for the indices. After the
data is loaded onto the GPU, the intermediate vectors normals, vertices

and indices are cleared so that no unnecessary memory waste occurs.

4.3.2 Rendering

Draw Call

The entire terrain gets rendered using 1 draw call, thanks to the index organi-
sation with triangle strips and primitive restarting. Listing

Vertex Shader

The vertex shader simply applies the model, view and projection matrices to the
current position attribute, which is set as the fragment position output variable.
The texture coordinate output variable is set to the vertex attribute.

The normal vectors require a small additional operation before being sent to the
fragment shader: in order to allow for lighting with non-uniform scaling with
the model matrix, the normal matrix must be applied to the normal vectors first
[dV20]. The normal matrix is computed before being set as a uniform variable,
as follows: N = (M−1)⊤. Afterwards, it is converted to a 3 × 3 matrix in the
vertex shader and multiplied with the normal vector, which is then set as the
normal output variable.

32

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

Fragment Shader

In the fragment shader, the lighting is computed with Phong shading and the
overlay texture is applied (if one is used). The lighting consists of an ambient
light with a strength factor 0.5 and of a diffuse light. Both lights have a white
color.

The fog calculation is based on [Sal15] and can be adjusted with the argument
density. Listing 4.1 shows the function which calculates the fog factor and its
usage:

1 float calculateFog(float density) {

2 float dist = length(cameraPos - FragPosition);

3 float fogFactor = exp(-density * dist);

4 return clamp(fogFactor , 0.0f, 1.0f);

5 }

6

7 void main() {

8 // ...

9 float fogFactor = calculateFog(fogDensity);

10 color = mix(fogColour , color , fogFactor);

11 // ...

12 FragColor = vec4(color , 1.0f);

13 }

Listing 4.1: The fog calculation in the fragment shader.

4.4 GeoMipMapping

This implementation of GeoMipMapping supports most basic functionalities de-
scribed in the original paper, but differs in a few key aspects: it draws some
inspiration from other approaches, most notably from GPU-based Geometry
Clipmaps [AH05] and certain minor elements from “Terrain Rendering in Frost-
bite Using Procedural Shader Splatting” [And07].

Both approaches utilize a single flat mesh (positioned around the viewer in
[AH05], in world-space [And07]) and store the heightmap as a texture object.
The height values are sampled in the vertex shader, which are then used to
displace the flat mesh on the y-axis.

The idea of using a texture image for the heightmap is applied to ATLOD’s
GeoMipMapping implementation. Rather than generating vertex buffers for
each block and loading in the height values into the vertices directly (as in the
naive renderer implementation), a single flat mesh with the side length of the
block size is generated once at load time. At render time, for each block, the
mesh is translated to the block’s world-space position and the height values get
sampled from the heightmap stored on the GPU. The upcoming subsections
describe the approach in greater detail.

33

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

4.4.1 Class Structure

GeoMipMapping contains the following members:

• unsigned blockSize: the size of a single block.

• unsigned nBlocksX, nBlocksZ: the number of blocks in the x and z-
direction. These two values are calculated in the constructor by dividing
the terrain width and height by the block size and rounding the values
down.

• std::vector<GeoMipMappingBlock> blocks: stores the blocks.

• std::vector<unsigned> borderSizes, borderStarts, centerSizes,

centerStarts: Stores the start indices and sizes of the subsets of the in-
dex buffer containing the border areas and center areas (explained in more
detail subsection “Vertex and Index Organisation”).

• unsigned vao, vbo, ebo: the vertex array object, vertex buffer object
and element buffer object respectively.

• float baseDistance: the distance until the next lower LOD level is
chosen (explained in more detail in subsection “LOD Selection”).

• unsigned minLod, maxLod, maxPossibleLod: the minimum and max-
imum user set LOD level, and the maximum possible LOD level.

4.4.2 Blocks

As previously described in the high-level overview of the GeoMipMapping al-
gorithm, the algorithm splits up the terrain into square blocks of side length
2n + 1.

In this implementation, a block is simply a structure containing information for
a particular section of the terrain. The struct GeoMipMappingBlock represents
such a block and contains the following fields:

• unsigned blockId: the ID of the current block.

• unsigned currentBorderBitmap: the current border permutation as a
bitmap.

• glm::vec2 translation: the 2-dimensional translation vector for trans-
lating the flat mesh to the block’s actual world-space position.

• glm::vec3 worldCenter: the actual center position of that block in world-
space, i.e. its y-coordinate is computed from the heightmap. This field
is used for the distance calculation for the LOD determination during
rendering.

• glm::vec3 p1, p2: the two points defining the AABB of the block (cor-
responding to p1 and p2 in the subsection “View-frustum Culling” in
“Basics of Terrain Rendering”).

34

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

4.4.3 Vertex and Index Organisation

ATLOD’s GeoMipMapping implementation consists of a single vertex buffer and
index buffer. The vertex buffer contains the vertices for a single flat blockSize×
blockSize mesh centered around (0, 0, 0), where blockSize = 2n+1 and n is the
maximum LOD level. The vertices of the flat mesh only consist of 4-byte floating
point (x, z)-coordinates, since the mesh is flat.

The index buffer contains the 4-byte unsigned integer indices of the flat mesh
and is organized as follows: the flat mesh is split up into its border area and
center area. The reason for splitting the mesh up this way will be made clear
shortly. The first part of the index buffer stores the indices of the border area
for every LOD level and border permutation, and the second part of the index
buffer stores the center area for every LOD level. What a border permutation
is will be explained in the next section. Figure 4.4 shows the described index
buffer organisation.

Figure 4.4: The index buffer organisation of the single flat block. The variable
n corresponds to the maximum LOD level.

Border Permutations

A border permutation is defined to be a 4-tuple (t, b, l, r), where t, b, l, r corre-
spond to top, bottom, left and right, and where each entry is set to 1 if the block
on the corresponding side has a lower LOD, and 0 otherwise. For example, if
the top and right neighboring blocks have a lower LOD than the current block,
the border permutation is (1, 0, 0, 1). These border permutations can also be
expressed as bitfields, e.g. 1001, which allows for easy indexing into the subset
of the index buffer containing the relevant indices. The number of possible per-
mutations is 24 = 16. In order for this approach to work, the difference in LOD
level between any two bordering blocks must be at most 1. Figure 4.5 shows all
possible border permutations of a 5× 5 block at LOD level 2.

35

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

(a) 0000. (b) 0001. (c) 0010. (d) 0011.

(e) 0100. (f) 0101. (g) 0110. (h) 0111.

(i) 1000. (j) 1001. (k) 1010. (l) 1011.

(m) 1100. (n) 1101. (o) 1110. (p) 1111.

Figure 4.5: Every possible border permutation for a LOD 2 GeoMipMap of a
5× 5 block. The center subblocks have been omitted from the illustration.

This makes clear why the flat mesh is split into its border and center area.
The center area only depends on the LOD level and is the same regardless of
the current border permutation. Not splitting the flat mesh up into its border
and center area would require longer index buffer generation times and consume
significantly more GPU memory.

Starts and Sizes Lists

The organisation of the index buffer as presented requires some additional man-
agement of the start indices and sizes of the subsets of the index buffer. As
previously mentioned, the GeoMipMapping class contains four members of the
type std::vector<unsigned>: borderStarts, borderSizes, centerStarts

and centerSizes. The borderStarts and borderSizes lists store the start-
ing index (into the index buffer) and the number of indices, for a subset of the
index buffer containing the indices of the border area for a given border per-
mutation and LOD level. Both the lists are indexed by multiplying the current
LOD level by 16 and then adding the current border permutation to it. The
centerStarts and centerSizes lists are indexed similarly, except that they

36

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

are indexed simply with the current LOD level.

In order to illustrate the idea more clearly, the following example is given: say
that the current block has a LOD level of 1 and every neighboring block has the
same LOD level (i.e. the border permutation is (0, 0, 0, 0)). We want to render
the block, which means we need to retrieve the indices for the flat mesh at the
LOD level 1 and for the border permutation 0000. The start index and the size
for the border area are retrieved with borderStarts[1 * 16 + 0b0000] and
borderSizes[1 * 16 + 0b0000] respectively, and for the center area with -

centerStarts[1] and centerSizes[1]. These four values are passed to the
two glDrawElements() draw calls for the block, which renders the flat mesh at
the chosen LOD level 1 and border permutation (0, 0, 0, 0). The full rendering
process is described in the subsection “Rendering” of this section. Figure 4.6
illustrates this example.

Figure 4.6: Illustration of accessing the start index and size of the subsets of
the index buffer for LOD 1 and border permutation (0, 0, 0, 0)

Loading

Now that the organisation of the vertices and indices has been presented, the
loading mechanisms are described. The vertex and index buffers get loaded
in the method loadBuffers(), which calls the two helper methods loadVer-

tices() an loadIndices().

The method loadVertices() (listing 4.2) simply generates the vertex array
object with its ID stored in the field vao and loads the vertices of the flat mesh
of size blockSize× blockSize centered around (0, 0, 0) into a vertex buffer with
its ID stored in the field vbo.

1 void GeoMipMapping :: loadVertices ()

37

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

2 {

3 for (int i = 0; i < _blockSize; i++) {

4 for (int j = 0; j < _blockSize; j++) {

5 // Load vertices around center point

6 float x = (-(float)_blockSize / 2.0f + (float)

_blockSize * j / (float)_blockSize);

7 float z = (-(float)_blockSize / 2.0f + (float)

_blockSize * i / (float)_blockSize);

8

9 _vertices.push_back(x); // Position x

10 _vertices.push_back(z); // Position z

11 }

12 }

13

14 glGenVertexArrays (1, &_vao);

15 glBindVertexArray(_vao);

16

17 glGenBuffers (1, &_vbo);

18 glBindBuffer(GL_ARRAY_BUFFER , _vbo);

19 glBufferData(GL_ARRAY_BUFFER , _vertices.size() * sizeof(

float), &_vertices [0], GL_STATIC_DRAW);

20

21 // Position attribute

22 glVertexAttribPointer (0, 2, GL_FLOAT , GL_FALSE , 2 *

sizeof(float), (void*)0);

23 glEnableVertexAttribArray (0);

24 }

Listing 4.2: Method GeoMipMapping::loadVertices() that generates the
vertex array object and loads the vertex buffer with the flat mesh of size
blockSize× blockSize centered around (0, 0, 0).

The index loading mechanism is significantly more complex. The top-level index
loading method loadIndices() performs the following operations:

• It loads the LOD 0 and LOD 1 representation of the flat mesh using
loadLod0() and loadLod1() respectively. The LOD 0 and LOD 1 indices
require special treatment. They are stored only as borders and do not
have a center. If minLod is greater than 1, then this step is skipped.

• It loads the rest of the indices from the minLod to maxLod, by first loading
in the border indices with loadBorderAreaForLod() and then the center
areas with loadCenterAreaForLod().

The loadBorderAreaForLod() method accepts the LOD level to be loaded lod

and first iterates from 0 to 16 (i.e. for every possible border permutation)
and calls loadBorderAreaForPermutation(lod, i). The function loadBor-

derAreaForPermutation() takes the LOD level to be loaded and the border
permutation to be loaded and calls the following 8 helper methods:

• loadTopLeftCorner(step, permutation)

• loadTopBorder(step, permutation)

38

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

• loadTopRightCorner(step, permutation)

• loadRightBorder(step, permutation)

• loadBottomRightCorner(step, permutation)

• loadBottomBorder(step, permutation)

• loadBottomLeftCorner(step, permutation)

• loadLeftBorder(step, permutation)

Each of the eight method calls loads in the corresponding side or corner at the
LOD level given by step and for the border permutation given by permutation.
The variable step is the step size (i.e. how many vertices to skip due to the
LOD when computing the mesh) and is computed directly from lod with step

= std::pow(2, maxLod - lod).

Listing 4.3 shows the method loadTopLeftCorner(). The other methods work
similarly.

1 unsigned GeoMipMapping :: loadTopLeftCorner(unsigned step ,

unsigned permutation)

2 {

3 unsigned count = 0;

4 if ((permutation & LEFT_BORDER_BITMASK) && (permutation

& TOP_BORDER_BITMASK)) { /* bitmask is 1_1_ */

5 /*

6 * *- - -*- - -*

7 * |\ /|

8 * | \ / |

9 * | \ / |

10 * * *- - -*

11 * | /|

12 * | / |

13 * |/ |

14 * *- - -*

15 *

16 */

17

18 pushIndex (2 * step , step);

19 pushIndex (2 * step , 0);

20 pushIndex(step , step);

21 pushIndex(0, 0);

22 pushIndex(0, 2 * step);

23 indices.push_back(RESTART_INDEX);

24

25 pushIndex(step , 2 * step);

26 pushIndex(step , step);

27 pushIndex(0, 2 * step);

28 indices.push_back(RESTART_INDEX);

29

30 count += 10;

31

39

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

32 } else if (permutation & LEFT_BORDER_BITMASK) { /*

bitmask is 1_0_*/

33

34 /*

35 * *- - -*- - -*

36 * |\ | /|

37 * | \ | / |

38 * | \|/ |

39 * * *- - -*

40 * | /|

41 * | / |

42 * |/ |

43 * *- - -*

44 *

45 */

46

47 pushIndex(step , 0);

48 pushIndex(0, 0);

49 pushIndex(step , step);

50 pushIndex(0, 2 * step);

51 pushIndex(step , 2 * step);

52 indices.push_back(RESTART_INDEX);

53

54 pushIndex(step , 0);

55 pushIndex(step , step);

56 pushIndex (2 * step , 0);

57 pushIndex (2 * step , step);

58 indices.push_back(RESTART_INDEX);

59

60 count += 11;

61

62 } else if (permutation & TOP_BORDER_BITMASK) { /*

bitmask is 0_1_ */

63 /*

64 * *- - -*- - -*

65 * |\ /|

66 * | \ / |

67 * | \ / |

68 * *- - -*- - -*

69 * | /|

70 * | / |

71 * |/ |

72 * *- - -*

73 *

74 */

75

76 pushIndex(0, step);

77 pushIndex(0, 2 * step);

78 pushIndex(step , step);

79 pushIndex(step , 2 * step);

80 indices.push_back(RESTART_INDEX);

81

82 pushIndex (2 * step , step);

83 pushIndex (2 * step , 0);

40

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

84 pushIndex(step , step);

85 pushIndex(0, 0);

86 pushIndex(0, step);

87 indices.push_back(RESTART_INDEX);

88

89 count += 11;

90

91 } else { /* bitmask is 0_0_*/

92 /*

93 * *- - -*- - -*

94 * | /| /|

95 * | / | / |

96 * |/ |/ |

97 * *- - -*- - -*

98 * | /|

99 * | / |

100 * |/ |

101 * *- - -*

102 *

103 */

104

105 pushIndex(0, step);

106 pushIndex(0, 2 * step);

107 pushIndex(step , step);

108 pushIndex(step , 2 * step);

109 indices.push_back(RESTART_INDEX);

110

111 pushIndex(0, 0);

112 pushIndex(0, step);

113 pushIndex(step , 0);

114 pushIndex(step , step);

115 pushIndex (2 * step , 0);

116 pushIndex (2 * step , step);

117 indices.push_back(RESTART_INDEX);

118

119 count += 12;

120 }

121

122 return count;

123 }

Listing 4.3: Method GeoMipMapping::loadTopLeftCorner() which loads in
the indices of the top left corner of the flat mesh for a given LOD level and
border permutation

The loadCenterAreaForLod() method accepts the LOD level to be loaded lod

as well and simply loads the indices with the given LOD resolution into -

indices, similarly to the index loading of the naive brute-force algorithm.

After loading the indices and the vertices, the intermediate vectors vertices

and indices get cleared.

41

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

4.4.4 Rendering

The method render() that is called each frame performs in two phases:

• The first phase iterates through every block and updates the LOD level
of the block (described in the next subsection “LOD Selection”) and then
updates the border permutation bitmap.

• The second phase iterates through every block again and performs view-
frustum culling, sets the uniform variables in the shader, and finally ren-
ders the the border area and center area of that block.

LOD Selection

The LOD of ATLOD’s GeoMipMapping implementation is based on the Eu-
clidean distance dist between the camera’s position pcamPos and the block’s
center point pblockCenter

dist =

√

√

√

√

(blockCenterx − camPosx)
2 + (blockCentery − camPosy)

2

+ (blockCenterz − camPosz)
2

.

A minor optimization for this calculation is possible by instead calculating
the LOD using the squared distance, which avoids an expensive square-root
call.

Two different LOD determination modes are possible: the linearly growing dis-
tance and the exponentially growing distance. Both use a base distance value
baseDist which can be set by the user. Note that baseDist should be larger than
blockSize, as otherwise cracks in the terrain may occur, but also not too large,
so that the performance is still adequate. The LOD computed by the linearly
growing distance can be defined with the following recursive formula

lodlin(dist, i) =

l − i+ 1 dist ≤ i · baseDist

lodlin(dist, i+ 1) i · baseDist < dist < (l + 1) · baseDist

0 otherwise

,

where i starts at 1 and l is the maximum LOD level. As a basic example, say
that l = 3, baseDist = 100, dist = 250. We begin computing the LOD level
with lodlin(250, 1). The second condition 1 · 100 < 250 < 4 · 100 holds, so we
continue with lodlin(250, 2). Again, the second condition 2 · 100 < 250 < 4 · 100
holds, so we continue with lodlin(250, 3). Now, the first condition 250 ≤ 3 · 100
holds, so the entire expression evaluates to 3 − 3 + 1 = 1, which means we set
the LOD level of the block to 1.

The exponentially growing distance is defined very similarly:

lodexp(dist, i) =

l − i+ 1 dist ≤ i · baseDist

lodexp(dist, 2i) i · baseDist < dist < (l + 1) · baseDist

0 otherwise

.

The above expressions are implemented in the GeoMipMapping class in a sin-
gle method determineLodDistance(). The LOD determination mode can be

42

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

set with the boolean argument doubleEachLevel. Additionally, the minimum
and maximum LOD levels can be manually set to be different from 0 and l
respectively by the user, with the fields minLod and maxLod. Note that the
user defined minLod and maxLod values are both set to max{0, minLod} and
min{l, maxLod} respectively in the constructor, so that the LOD level does not
go out of bounds. Listing 4.4 shows the method determineLodDistance.

1 unsigned GeoMipMapping :: determineLodDistance(float

squareDistance , float baseDist , bool doubleEachLevel)

2 {

3 unsigned distancePower = 1;

4 for (unsigned i = 0; i < _maxLod - _minLod; i++) {

5 if (squaredDistance < distancePower * distancePower

* baseDist * baseDist)

6 return _maxLod - i;

7

8 if (doubleEachLevel)

9 distancePower <<= 1;

10 else

11 distancePower ++;

12 }

13 return _minLod;

14 }

Listing 4.4: Method GeoMipMapping::determineLodDistance() that
determines the LOD level of a block based on its distance to the camera.

Figure 4.7 shows both LOD determination modes in action.

(a) Linearly growing distance mode. (b) Exponentially growing distance
mode.

Figure 4.7: Illustration of a flat terrain showcasing the linearly growing distance
mode (a) and exponentially growing distance mode (b). The red, green and blue
colors indicate successively lower LOD levels, starting from the maximum level
in the center.

43

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

Border Bitmap Calculation

Listing 4.5 shows the calculation of the border permutation bitmap for a given
block. The first step consists of calculating the minimum and maximum x and
z block indices in order to avoid going out of bounds. Afterwards, the LOD
of the four neighboring blocks gets retrieved and the bitmap is set depending
on whether the corresponding side has a lower LOD or not, as described previ-
ously.

1 unsigned GeoMipMapping :: calculateBorderBitmap(unsigned

currentBlockId , unsigned x, unsigned z)

2 {

3 unsigned currentLod = _blocks[currentBlockId]. currentLod

;

4

5 unsigned maxX = std::max((int)x - 1, 0);

6 unsigned minX = std::min((int)x + 1, (int)_nBlocksX - 1)

;

7 unsigned maxZ = std::max((int)z - 1, 0);

8 unsigned minZ = std::min((int)z + 1, (int)_nBlocksZ - 1)

;

9

10 GeoMipMappingBlock& leftBlock = getBlock(maxX , z);

11 GeoMipMappingBlock& rightBlock = getBlock(minX , z);

12 GeoMipMappingBlock& topBlock = getBlock(x, maxZ);

13 GeoMipMappingBlock& bottomBlock = getBlock(x, minZ);

14

15 unsigned leftLower = currentLod > leftBlock.currentLod ?

1 : 0;

16 unsigned rightLower = currentLod > rightBlock.currentLod

? 1 : 0;

17 unsigned topLower = currentLod > topBlock.currentLod ? 1

: 0;

18 unsigned bottomLower = currentLod > bottomBlock.

currentLod ? 1 : 0;

19

20 return (leftLower << 3) | (rightLower << 2) | (topLower

<< 1) | bottomLower;

21 }

Listing 4.5: The method GeoMipMapping::calculateBorderBitmap() which
computes the border permutation bitmap for a given block.

Draw Calls

Two draw calls are performed per block: one for the center area and one for
the border area. The arguments of the draw calls follow the logic described in
“Vertex and Index Organisation”. Listing 4.6 shows the two draw calls which
occur inside the second phase of the render() method.

44

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

1 unsigned currentIndex = block.currentLod - _minLod;

2

3 // First render the center subblocks (only for LOD >= 2,

since

4 // LOD 0 and 1 do not have a center block) */

5 if (block._currentLod >= 2) {

6 glDrawElements(GL_TRIANGLE_STRIP ,

7 centerSizes[currentIndex],

8 GL_UNSIGNED_INT ,

9 (void*)(centerStarts[currentIndex] * sizeof(unsigned

)));

10 }

11

12 // Then render the border subblocks

13 currentIndex = currentIndex * 16 + block.

_currentBorderBitmap;

14 glDrawElements(GL_TRIANGLE_STRIP ,

15 borderSizes[currentIndex],

16 GL_UNSIGNED_INT ,

17 (void*)(borderStarts[currentIndex] * sizeof(unsigned)));

Listing 4.6: The two draw calls occuring inside the second loop over all blocks
inside the method GeoMipMapping::render().

Vertex Shader

The vertex shader calculates the heightmap texture coordinate using the vertex
position attribute, the texture width and height given as uniforms, and the
block’s translation vector given as an uniform.

Afterwards, it samples the height from the heightmap texture and multiplies
it by 65535 (since the texture image is normalized with all values from 0 to
1).

Next, it translates the vertex from its initial position around (0, 0, 0) to its
actual world-space position using the translation vector and the y-coordinate
is set to the sampled height. Listing 4.7 shows the source code of the vertex
shader.

1 #version 330 core

2 layout (location = 0) in vec2 aPos;

3

4 out vec3 FragPosition;

5

6 uniform mat4 projection;

7 uniform mat4 view;

8 uniform mat4 model;

9 uniform vec2 offset;

10 uniform sampler2D heightmapTexture;

11 uniform float textureWidth;

12 uniform float textureHeight;

45

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

13

14 void main()

15 {

16 vec2 texPos = vec2((aPos.x + offset.x + 0.5 *

textureWidth) / (textureWidth),

17 (aPos.y + offset.y + 0.5 *

textureHeight) / (textureHeight));

18

19 float height = texture(heightmapTexture , texPos).r;

20 float y = height * 65535;

21

22 vec3 actualPos = vec3(aPos.x + offset.x, y, aPos.y +

offset.y);

23

24 FragPosition = vec3(model * vec4(actualPos , 1.0));

25 gl_Position = projection * view * model * vec4(actualPos

, 1.0);

26 }

Listing 4.7: The vertex shader of the GeoMipMapping implementation.

Fragment Shader

The fragment shader shades the fragment using the Phong shading method and
is exactly the same as the naive brute-force algorithm in terms of computing
the lighting. The main difference is the way how normals are handled. Recall
that the vertices contained no normal vector attribute. The normal vectors
are instead calculated based on the method described in [And07]: first, the
heightmap is sampled at the four orthogonally neighboring points for the height
values yleft, yright, ytop, ybottom. Using these four values, the slope in x and
z-direction can be calculated by computing

dx = yleft − yright

dz = ytop − ybottom.

These values can now be used to create a normal vector

n =
(dx, 2, dz)

∥(dx, 2, dz)∥
.

Afterwards, this normal vector can be used as usual to compute diffuse light-
ing. Listing 4.8 shows the calculation of the normal vector from the heightmap
texture.

1 vec2 texPos = vec2((FragPosition.x + 0.5 * textureWidth) /

textureWidth , (FragPosition.z + 0.5 * textureHeight) /

textureHeight);

2

3 float leftHeight = texture(heightmapTexture , texPos - vec2

(1.0 / textureWidth , 0)).r;

46

CHAPTER 4. ATLOD: A TERRAIN LEVEL OF DETAIL (RENDERER)

4 float rightHeight = texture(heightmapTexture , texPos + vec2

(1.0 / textureWidth , 0)).r;

5 float upHeight = texture(heightmapTexture , texPos + vec2(0,

1.0 / textureHeight)).r;

6 float downHeight = texture(heightmapTexture , texPos - vec2

(0, 1.0 / textureHeight)).r;

7

8 // Multiply with 65535 to denormalize

9 float dx = (leftHeight - rightHeight) * yScale * 65535;

10 float dz = (downHeight - upHeight) * yScale * 65535;

11

12 vec3 normal = normalize(vec3(dx, 2.0f, dz));

13

14 // Continue with diffuse lighting ...

Listing 4.8: Calculating the normal vector in the fragment shader using the
heightmap texture.

The fog calculation is exactly the same as in the naive brute-force rendering
algorithm (listing 4.1).

47

Chapter 5

Results

In this chapter, the performance and visual accuracy of ATLOD is measured.

5.1 Experimental Setup

5.1.1 Hardware

The hardware used is a MacBook Air 2020 with an Intel CPU. The specifications
are displayed in table 5.1.

CPU 1.1 GHz Dual-Core Intel Core i3
Memory 8 GB 3733 MHz LPDDR4X
Graphics Intel Iris Plus Graphics 1536 MB

OS macOS Monterey Version 12.6
Resolution 2560× 1600

Table 5.1: The specifications of the used MacBook Air 2020.

5.1.2 Height Data and GeoMipMapping Configuration

The height data used is the SRTM 30m data set retrieved from OpenTopog-
raphy [NAS13]. The heightmap file is a 13922 × 14140 16-bit greyscale PNG
image converted from a GeoTIFF file (figure 5.1) and covers a large extent of
Switzerland (excluding the Grisons) and small parts of Germany, France and
Italy. The total area is 130 km2.

48

CHAPTER 5. RESULTS

Figure 5.1: The 13922× 14140 16-bit greyscale heightmap used for benchmark-
ing (retrieved from OpenTopography [NAS13]). In this figure, the gray values
were converted from 0,. . . ,65535 to 0,. . . ,255 in order to make the heights more
visible.

The GeoMipMapping algorithm is configured for the best balance between per-
formance and visual accuracy as shown in table 5.2.

Block size 29 + 1 = 513
Fog factor 0 (deactivated)

Minimum LOD 0 (default)
Maximum LOD 9 (default)
Base distance 700

LOD determination mode Exponentially growing distance
y-scale 0.03

Table 5.2: Rendering settings for the benchmarks.

5.1.3 Benchmarks

Two kinds of benchmarks are performed: The performance benchmark, which
measures the framerate of rendering, and the visual accuracy benchmark, which
measures the image difference between GeoMipMapping and naive rendering.
For both benchmarks, no fog and no overlay texture is rendered.

For the performance benchmark, two kinds of scenarios are performed:

• The first scenario is the flyover from the bottom-left corner to the top-
right, whilst the camera is looking down a certain angle. The y-coordinate

49

CHAPTER 5. RESULTS

and the front vector of the camera are fixed during this flyover.

• The second scenario is the 360◦ rotation while stationary.

For the visual accuracy benchmark, two kinds of scenarios are performed as
well:

• The first scenario is a screenshot of a large section of the terrain at a great
distance, once with LOD and once at full resolution.

• The second scenario is a screenshot of a smaller section of terrain but with
a high camera zoom, once with LOD and once without.

5.2 Performance Benchmarks

The performance accuracy is computed by calculating the average FPS from the
beginning of the flight or rotation to the end. The performance measurements
of the naive renderer is not documented in this report, but was consistently
around less than 1 FPS in both scenarios.

5.2.1 Flyover from Corner to Corner

Five flyovers were conducted from the bottom-left corner to the top-right corner
with various velocities. Table 5.3 shows the FPS for each of the flyovers.

Flyover 1 Flyover 2 Flyover 3 Flyover 4 Flyover 5 Average
FPS 59.83 60.14 60.35 60.08 57.89 59.65

Table 5.3: RMSE of the large terrain screenshots 1 to 5.

5.2.2 360° Rotation

Five rotations were conducted with various velocities. Table 5.4 shows the FPS
for each of the rotations.

Rotation 1 Rotation 2 Rotation 3 Rotation 4 Rotation 5 Average
FPS 60.61 60.57 61.62 60.08 61.11 60.65

Table 5.4: RMSE of the large terrain screenshots 1 to 5.

5.3 Visual Accuracy Benchmarks

For the visual accuracy benchmarks, the root mean square error (RMSE) of
both images is computed :

RMSE =

√

√

√

√

1

mn

m
∑

x=1

n
∑

y=1

(A(x, y)−B(x, y))2,

where m is the length of both images, n is the height of both images and A,B
is the first and second image respectively [Mar23, p. 47]. The image difference
and the RMSE are both computed using Matlab.

50

CHAPTER 5. RESULTS

Appendix B contains all screenshots for the visual accuracy benchmarks.

5.3.1 Large Terrain Screenshots

Five screenshots of the terrain were captured at various camera positions and
angles, such that a large portion of the terrain was visible. The RMSE of every
screenshot was computed, as shown in table 5.5.

S. 1 S. 2 S. 3 S. 4 S. 5 Average
RMSE 3.94 3.1 2.59 1.96 2.32 2.78

Table 5.5: RMSE of the large terrain screenshots 1 to 5.

5.3.2 Low FOV Screenshots

Five screenshots of the terrain were captured at various camera positions and
angles, such that only a small portion far away was visible due to the low FOV.
The RMSE of every screenshot was computed, as shown in table 5.5.

S. 1 S. 2 S. 3 S. 4 S. 5 Average
RMSE 4.82 5.71 4.78 5.3 4.49 5.02

Table 5.6: RMSE of the low FOV screenshots 1 to 5.

5.4 Memory Consumption

In most cases, the RAM and GPU memory consumption can be calculated
manually for a given terrain size and block size.

5.4.1 RAM

The RAM consumption is mostly dependent on how many blocks (i.e.
GeoMipMappingBlock instances) need to be managed. Generally, the larger
the block size and the smaller the terrain size, the fewer blocks need to be
managed.

5.4.2 GPU Memory

The main bottleneck of this implementation in terms of GPU memory is the
heightmap texture, which takes up 2 bytes per height value. An alternative
approach would be to support 1-byte grayscale heightmaps. However, this would
limit the number of possible height values to 256 and therefore produce “blocky”
looking terrain.

Memory consumption by the vertices and indices is quite low. The number of
vertices that are loaded on the GPU is only blockSize× blockSize.

51

CHAPTER 5. RESULTS

5.4.3 Examples

Table 5.7 shows the GPU memory usage by the vertex buffers and index buffers
for various block sizes. The size of the vertex buffer was calculated with
blockSize × blockSize × 2 × 4 and size of the index buffer was computed and
printed directly in ATLOD.

Block size Vertex buffer Index buffer Total
65 0.03 MB 0.12 MB 0.15 MB
129 0.13 MB 0.33 MB 0.46 MB
257 0.52 MB 1.02 MB 1.54 MB
513 2.1 MB 3.43 MB 5.53 MB

Table 5.7: Memory consumption by the vertex and index buffers for different
block sizes.

Table 5.8 shows the GPU memory usage by the heightmap texture image for
various heightmap sizes, calculated with heightmapSize × heightmapSize ×
2.

Terrain size Heightmap texture
2000× 2000 8 MB
5000× 5000 50 MB

16000× 16000 512 MB

Table 5.8: Memory consumption by the heightmap texture on the GPU for
various heightmap sizes.

Table 5.9 shows the memory usage by the blocks in GeoMipMapping’s block list
for various heightmap sizes and block sizes, calculated and printed in ATLOD di-
reclty by multiplying the size of the list and sizeof(GeoMipMappingBlock).

Block size Heightmap size
2000× 2000 5000× 5000 16000× 16000

65 0.08 MB 0.53 MB 5.45 MB
129 0.02 MB 0.13 MB 1.35 MB
257 4.31 KB 0.03 MB 0.33 MB
513 0.79 KB 7.12 KB 0.08 MB

Table 5.9: Memory consumption by the block list at different block sizes and
heightmap sizes.

52

Chapter 6

Discussion

Overall, the implemented algorithm works decently well, despite lacking some
features for it to be fully optimized. The configurability of the implementation
allows for usage of the system for different applications and purposes.

In order to actually test the limits of the implemented algorithm, the perfor-
mance measurements should be conducted again with stronger hardware. It
is to be noted that the implementation still performs decently well, given the
relatively weak hardware it was tested on.

A comparison with existing systems and game engines is difficult. ATLOD is
developed specifically for terrain rendering, whilst game engines contain other
components and often perform various tasks in the background, which hinders
an accurate performance comparison.

53

Chapter 7

Conclusion

7.1 Potential Improvements

The GeoMipMapping implementation has some room for improvement:

• The view-frustum culling can be implemented more efficiently with a
quadtree. The main problem with quadtree-based view-frustum culling
is that in order to support non-square terrains, special care needs to
be taken for the quadtree size. A simple solution would be to define
the quadtree to have a side length of the next power of two larger than
max{terrainWidth, terrainHeight} and to mark nodes as null in quad-
rants where there is no terrain.

• The performance can be further increased with instanced rendering. This
would reduce the number of draw calls dramatically.

• The idea that a (0, 0, 1, 0) border permutation is simply a (1, 0, 0, 0) border
permutation with a rotation of −π/2 can be applied to further reduce
GPU memory usage. This could be achieved by allocating only the indices
for the border permutations (0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0) and
(1, 1, 1, 1) and then by simply rotating the flat mesh in the vertex shader,
in addition to translating it.

• Another potential improvement is to extend the implemented algorithm
with vertex morphing in order to reduce the popping artifacts.

7.2 Outlook for the Bachelor Thesis

There are several possible project ideas for the bachelor thesis which build upon
this project and the topics behind it:

• Integration of a terrain LOD system in a game engine (e.g. Godot) or in
a scene-graph library (e.g. SLProject).

• Development of a flight simulator, where the user can control the aircraft/-
camera using gestures.

54

CHAPTER 7. CONCLUSION

• Implementation of a streaming/paging-based terrain LOD algorithm, where
multiple terrain instances are dynamically loaded and offloaded depending
on the position. This would allow for (theoretically) infinite terrains.

• Implementation and benchmarking of additional terrain LOD algorithms.
Some interesting and relevant algorithms that could be added are GPU-
based Geometry Clipmaps, CDLOD and Concurrent Binary Trees.

55

Bibliography

[AH05] Arul Asirvatham and Hugues Hoppe. Terrain rendering using gpu-
based geometry clipmaps. In GPU Gems 2. Addison-Wesley, 2005.

[And07] Johan Andersson. Terrain rendering in frostbite using procedural
shader splatting. In ACM SIGGRAPH 2007 Courses, SIGGRAPH
’07, page 38–58, New York, NY, USA, 2007. Association for Com-
puting Machinery.

[Bar] Sean Barrett. Stb libraries: Single-file public domain libraries for
c/c++. https://github.com/nothings/stb.

[BN08] Eric Bruneton and Fabrice Neyret. Precomputed atmospheric scat-
tering. In Proceedings of the Nineteenth Eurographics Conference on
Rendering, EGSR ’08, pages 1079–1086, Goslar, DEU, 2008. Euro-
graphics Association.

[Cor] Omar Cornut. Dear imgui: Bloat-free immediate mode graphi-
cal user interface for c++ with minimal dependencies. https:

//github.com/ocornut/imgui.

[dB00] Willem H. de Boer. Fast terrain rendering using geometrical
mipmapping. In The Web Conference, 2000.

[DDKY21] Thomas Deliot, Jonathan Dupuy, Iijnen Kees, and Xiaoling Yao.
Experimenting with concurrent binary trees for large scale terrain
rendering. SIGGRAPH 2021 Advances in Real-time Rendering in
Games course, 2021.

[Dup20] Jonathan Dupuy. Concurrent binary trees (with application to
longest edge bisection). Proc. ACM Comput. Graph. Interact. Tech.,
3(2), aug 2020.

[dV20] Joey de Vries. Learn OpenGL - Graphics Programming. Kendall &
Welling, 2020.

[DWS+97] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C.
Miller, Charles Aldrich, and Mark B. Mineev-Weinstein. Roam-
ing terrain: Real-time optimally adapting meshes. In Proceedings
of the 8th Conference on Visualization ’97, VIS ’97, pages 81–88,
Washington, DC, USA, 1997. IEEE Computer Society Press.

56

https://github.com/nothings/stb
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui

BIBLIOGRAPHY

[Fed] Federal Office of Topography swisstopo. swissALTI3D. https://

www.swisstopo.admin.ch/en/geodata/height/alti3d.html.

[For] Sven Forstmann. Fast-quadric-mesh-simplification. https://

github.com/Zylann/godot_heightmap_plugin.

[Gam] Epic Games. Landscape Overview — Unreal Engine 5.3
Documentation. https://docs.unrealengine.com/5.3/en-US/

landscape-overview/.

[Gil] Marc Gilleron. Godot heightmap plugin. https://github.com/

Zylann/godot_heightmap_plugin.

[LH04] Frank Losasso and Hugues Hoppe. Geometry clipmaps: Terrain
rendering using nested regular grids. ACM Trans. Graph., 23(3),
2004.

[LKR+96] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges,
Nick Faust, and Gregory A. Turner. Real-Time, Continuous Level of
Detail Rendering of Height Fields. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’96, pages 109–118, New York, NY, USA, 1996. Association
for Computing Machinery.

[LWC+02] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin
Reddy, and Amitabh Varshney. Level of Detail for 3D Graphics.
Elsevier Science Inc., USA, 2002.

[Mar23] Marcus Hudritsch. Skript Grundlagen der Bildverarbeitung. Bern
University of Applied Sciences, 2023.

[NAS13] NASA Shuttle Radar Topography Mission (SRTM). Shuttle radar
topography mission (srtm) global. https://doi.org/10.5069/

G9445JDF, 2013. Distributed by OpenTopography.

[Pet] Cory Petkovsek. Terrain3d. https://github.com/TokisanGames/

Terrain3D.

[RHSS98] Stefan Röttger, Wolfgang Heidrich, Philipp Slusallek, and Hans-
Peter Seidel. Real-time generation of continuous levels of detail for
height fields. Journal of WSCG, 6(1-3), 1998.

[Sal15] Jose Salvatierra. 4.2. blending, aliasing, and fog. https:

//opengl-notes.readthedocs.io/en/latest/topics/

texturing/aliasing.html, 2015.

[Sav17] Mike J Savage. Geometry clipmaps: simple terrain render-
ing with level of detail. https://mikejsavage.co.uk/blog/

geometry-clipmaps.html, 2017.

[Seo] JangKyu Seo. Unity hlod system. https://github.com/

Unity-Technologies/HLODSystem/.

[Str09] Filip Strugar. Continuous distance-dependent level of detail for ren-
dering heightmaps. J. Graphics, GPU, & Game Tools, 14:57–74, 01
2009.

57

https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html
https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html
https://github.com/Zylann/godot_heightmap_plugin
https://github.com/Zylann/godot_heightmap_plugin
https://docs.unrealengine.com/5.3/en-US/landscape-overview/
https://docs.unrealengine.com/5.3/en-US/landscape-overview/
https://github.com/Zylann/godot_heightmap_plugin
https://github.com/Zylann/godot_heightmap_plugin
https://doi.org/10.5069/G9445JDF
https://doi.org/10.5069/G9445JDF
https://github.com/TokisanGames/Terrain3D
https://github.com/TokisanGames/Terrain3D
https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
https://mikejsavage.co.uk/blog/geometry-clipmaps.html
https://mikejsavage.co.uk/blog/geometry-clipmaps.html
https://github.com/Unity-Technologies/HLODSystem/
https://github.com/Unity-Technologies/HLODSystem/

BIBLIOGRAPHY

[Tec] Unity Technologies. Unitymeshsimplifier.

[Ulr02] Thatcher Ulrich. Rendering Massive Terrains using Chunked Level of
Detail Control. http://tulrich.com/geekstuff/chunklod.html,
2002.

[Wid12] Mattias Widmark. Terrain in battlefield 3: A modern, complete
and scalable system. https://www.slideshare.net/DICEStudio/

terrain-in-battlefield-3-a-modern-complete-and-scalable-system,
2012.

58

http://tulrich.com/geekstuff/chunklod.html
https://www.slideshare.net/DICEStudio/terrain-in-battlefield-3-a-modern-complete-and-scalable-system
https://www.slideshare.net/DICEStudio/terrain-in-battlefield-3-a-modern-complete-and-scalable-system

Appendix A

DEM Preprocessing

The following steps can be performed to convert a GeoTIFF file or Esri ASCII
grid file into a 16-bit grayscale PNG heightmap image using the GIS software
tool QGIS:

1. Open the GeoTIFF or Esri ASCII grid file with QGIS

2. Select “Raster” → “Conversion” → “Translate (Convert Format)...”

3. Select your heightmap as the input layer

4. “Output data type”: UInt16

5. “Converted”: the path for the new heightmap with “.png” postfixed.

6. Press “Convert”

59

Appendix B

Visual Accuracy
Benchmarking Images

B.0.1 Large Terrain Screenshots

Large Terrain Screenshot 1

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.1: Screenshot showcasing the screenshot of a large section of the terrain
with no LOD (a), with LOD (b), the absolute difference (c) between (a) and
(b), and the binarised absolute difference (d) of (c). The computed RMSE is
3.94.

60

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Large Terrain Screenshot 2

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.2: Screenshot showcasing the screenshot of a large section of the terrain
with no LOD (a), with LOD (b), the absolute difference (c) between (a) and
(b), and the binarised absolute difference (d) of (c). The computed RMSE is
3.1.

61

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Large Terrain Screenshot 3

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.3: Screenshot showcasing the screenshot of a large section of the terrain
with no LOD (a), with LOD (b), the absolute difference (c) between (a) and
(b), and the binarised absolute difference (d) of (c). The computed RMSE is
2.59.

62

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Large Terrain Screenshot 4

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.4: Screenshot showcasing the screenshot of a large section of the terrain
with no LOD (a), with LOD (b), the absolute difference (c) between (a) and
(b), and the binarised absolute difference (d) of (c). The computed RMSE is
1.96.

63

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Large Terrain Screenshot 5

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.5: Screenshot showcasing the screenshot of a large section of the terrain
with no LOD (a), with LOD (b), the absolute difference (c) between (a) and
(b), and the binarised absolute difference (d) of (c). The computed RMSE is
2.32.

64

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

B.0.2 Low FOV Screenshots

Low FOV Screenshot 1

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.6: Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference (c) between (a)
and (b) and the binarised absolute difference (d) of (c). The FOV is set to 6◦

and the computed RSME is 4.82.

65

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Low FOV Screenshot 2

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.7: Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference (c) between (a)
and (b) and the binarised absolute difference (d) of (c). The FOV is set to 3◦

and the computed RSME is 5.71.

66

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Low FOV Screenshot 3

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.8: Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference (c) between (a)
and (b) and the binarised absolute difference (d) of (c). The FOV is set to 2◦

and the computed RSME is 4.78.

67

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Low FOV Screenshot 4

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.9: Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference (c) between (a)
and (b) and the binarised absolute difference (d) of (c). The FOV is set to 1◦

and the computed RSME is 5.3.

68

APPENDIX B. VISUAL ACCURACY BENCHMARKING IMAGES

Low FOV Screenshot 5

(a) No LOD. (b) With LOD.

(c) Absolute difference. (d) Absolute difference (binarised).

Figure B.10: Screenshot showcasing the screenshot of a small section of the
terrain with no LOD (a), with LOD (b), the absolute difference (c) between (a)
and (b) and the binarised absolute difference (d) of (c). The FOV is set to 1◦

and the computed RSME is 4.49.

69

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Erklärung der Studierenden
Déclaration des étudiant-e-s

Selbständige Arbeit / Travail autonome

Ich bestätige mit meiner Unterschrift, dass ich meine vorliegende Projektarbeit selbständig durch-
geführt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und ande-
ren Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im
Anhang vollständig aufgeführt. Sämtliche Inhalte, die nicht von mir stammen, sind mit dem genauen
Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué mon présent travail de projet de manière autonome.
Toutes les sources d’information (littérature spécialisée, discussions avec spécialistes etc.) et autres
ressources qui m’ont fortement aidée dans mon travail sont intégralement mentionnées dans
l’annexe de ma thèse. Tous les contenus non rédigés par mes soins sont dûment référencés avec
indication précise de leur provenance.

Name/Nom, Vorname/Prénom ………………………………………………

Datum/Date ………………………………………………

Unterschrift/Signature ………………………………………………

Dieses Formular ist dem Bericht beizulegen.
Ce formulaire doit être joint au rapport.

Amar Tabakovic
Tabakovic, Amar

Amar Tabakovic
19. Januar 2024

	Introduction
	Goals of this Project
	Intended Readership
	Notation and Terminology
	Mathematical Notation
	The Term ``LOD Level''

	Outline of the Report

	Basics of Terrain Rendering
	Terrain Data Representation
	Heightmaps
	Triangulated Irregular Networks

	Bintrees and Quadtrees
	View-frustum Culling
	Potential Problems During Terrain Rendering
	Cracks
	Popping

	Existing Work and Literature
	Algorithms and Approaches for Terrain LOD
	ROAM
	GeoMipMapping
	(GPU-based) Geometry Clipmaps
	Concurrent Binary Trees
	Conclusion

	Terrain LOD in Real-world Systems
	Game Engines

	ATLOD: A Terrain Level of Detail (Renderer)
	Used Technologies
	Basic Setup and Architecture
	Overview
	Command Line Arguments
	Shaders
	Camera
	Skybox
	Heightmaps
	Base Terrain

	Naive Brute-force Algorithm
	Vertex and Index Organisation
	Rendering

	GeoMipMapping
	Class Structure
	Blocks
	Vertex and Index Organisation
	Rendering

	Results
	Experimental Setup
	Hardware
	Height Data and GeoMipMapping Configuration
	Benchmarks

	Performance Benchmarks
	Flyover from Corner to Corner
	360° Rotation

	Visual Accuracy Benchmarks
	Large Terrain Screenshots
	Low FOV Screenshots

	Memory Consumption
	RAM
	GPU Memory
	Examples

	Discussion
	Conclusion
	Potential Improvements
	Outlook for the Bachelor Thesis

	Bibliography
	DEM Preprocessing
	Visual Accuracy Benchmarking Images
	Large Terrain Screenshots
	Low FOV Screenshots

